论文标题
DRL-M4MR:基于DQN深入学习SDN的智能多播路由方法
DRL-M4MR: An Intelligent Multicast Routing Approach Based on DQN Deep Reinforcement Learning in SDN
论文作者
论文摘要
传统的多播路由方法在构建多播树时存在一些问题,例如对网络状态信息的访问有限,对网络的动态和复杂变化的适应性不佳以及不灵活的数据转发。为了解决这些缺陷,软件定义的网络(SDN)中最佳的多播路由问题是根据多目标优化问题量身定制的,以及基于深Q网络(DQN)深度强化学习(DRL)方法的智能多播路由算法DRL-M4MR的设计,旨在构建多播在SDN中构建多播树。首先,通过组合SDN的全局视图和控制,将多播树状态矩阵,链路带宽矩阵,链路延迟矩阵和链路延迟损耗矩阵设计为DRL代理的状态空间。其次,代理的动作空间是网络中的所有链接,而动作选择策略旨在将链接添加到四种情况下的当前多播树。第三,单步和最终的奖励功能表格旨在指导智能制定决策以构建最佳的多播树。实验结果表明,与现有算法相比,DRL-M4MR的多播树结构可以在训练后获得更好的带宽,延迟和数据包损耗率,并且可以在动态网络环境中做出更智能的多播路由决策。
Traditional multicast routing methods have some problems in constructing a multicast tree, such as limited access to network state information, poor adaptability to dynamic and complex changes in the network, and inflexible data forwarding. To address these defects, the optimal multicast routing problem in software-defined networking (SDN) is tailored as a multi-objective optimization problem, and an intelligent multicast routing algorithm DRL-M4MR based on the deep Q network (DQN) deep reinforcement learning (DRL) method is designed to construct a multicast tree in SDN. First, the multicast tree state matrix, link bandwidth matrix, link delay matrix, and link packet loss rate matrix are designed as the state space of the DRL agent by combining the global view and control of the SDN. Second, the action space of the agent is all the links in the network, and the action selection strategy is designed to add the links to the current multicast tree under four cases. Third, single-step and final reward function forms are designed to guide the intelligence to make decisions to construct the optimal multicast tree. The experimental results show that, compared with existing algorithms, the multicast tree construct by DRL-M4MR can obtain better bandwidth, delay, and packet loss rate performance after training, and it can make more intelligent multicast routing decisions in a dynamic network environment.