论文标题

不规则域中Navier-Stokes方程的部分边界规律性

Partial boundary regularity for the Navier-Stokes equations in irregular domains

论文作者

Breit, Dominic

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We prove partial regularity of suitable weak solutions to the Navier--Stokes equations at the boundary in irregular domains. In particular, we provide a criterion which yields continuity of the velocity field in a boundary point and obtain solutions which are continuous in a.a. boundary boundary point (their existence is a consequence of a new maximal regularity result for the Stokes equations in domains with minimal regularity). We suppose that we have a Lipschitz boundary with locally small Lipschitz constant which belongs to the fractional Sobolev space $W^{2-1/p,p}$ for some $p>\frac{15}{4}$. The same result was previously only known under the much stronger assumption of a $C^2$-boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源