论文标题

航空跟踪的本地知觉感知变压器

Local Perception-Aware Transformer for Aerial Tracking

论文作者

Fu, Changhong, Peng, Weiyu, Li, Sihang, Ye, Junjie, Cao, Ziang

论文摘要

基于变压器的视觉对象跟踪已被广泛使用。但是,变压器结构缺乏足够的电感偏差。此外,仅专注于编码全局功能会损害建模本地细节,这限制了航空机器人中跟踪的能力。具体而言,使用局部模型到全球搜索机制,提出的跟踪器将全局编码器替换为新型的局部识别编码器。在使用的编码器中,仔细设计了局部识别的关注和局部元素校正网络,以减少全局冗余信息干扰和增加局部电感偏见。同时,后者可以通过详细信息网络准确地在空中视图下对本地对象详细信息进行建模。所提出的方法在几种权威的空中基准中实现了竞争精度和鲁棒性,总共有316个序列。所提出的追踪器的实用性和效率已通过现实世界测试得到了验证。

Transformer-based visual object tracking has been utilized extensively. However, the Transformer structure is lack of enough inductive bias. In addition, only focusing on encoding the global feature does harm to modeling local details, which restricts the capability of tracking in aerial robots. Specifically, with local-modeling to global-search mechanism, the proposed tracker replaces the global encoder by a novel local-recognition encoder. In the employed encoder, a local-recognition attention and a local element correction network are carefully designed for reducing the global redundant information interference and increasing local inductive bias. Meanwhile, the latter can model local object details precisely under aerial view through detail-inquiry net. The proposed method achieves competitive accuracy and robustness in several authoritative aerial benchmarks with 316 sequences in total. The proposed tracker's practicability and efficiency have been validated by the real-world tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源