论文标题

S $^2 $联系人:基于图形的网络,用于半监督学习的3D手对象联系人估计

S$^2$Contact: Graph-based Network for 3D Hand-Object Contact Estimation with Semi-Supervised Learning

论文作者

Tse, Tze Ho Elden, Zhang, Zhongqun, Kim, Kwang In, Leonardis, Ales, Zheng, Feng, Chang, Hyung Jin

论文摘要

尽管最近在手和对象数据集中进行了准确的3D注释做出了努力,但仍存在3D手和对象重建中的空白。现有的作品利用接触地图来完善不准确的手动姿势构成估计并产生grasps给定的对象模型。但是,它们需要很少可用的显式3D监督,因此仅限于受限的设置,例如,热摄像机观察到操纵物体上剩下的残留热量。在本文中,我们提出了一个新型的半监督框架,使我们能够从单眼图像中学习接触。具体而言,我们利用大规模数据集中的视觉和几何一致性约束来生成伪标记,并在半监视学习中生成伪标记,并提出一个有效的基于图形的网络来推断联系。我们的半监督学习框架与对具有“有限”注释的数据培训的现有监督学习方法有利地改进。值得注意的是,与常用的基于点网的方法相比,我们提出的模型能够以不到网络参数的一半和内存访问成本获得较高的结果。我们显示出使用触点图的好处,该触点图规则手动相互作用以产生更准确的重建。我们进一步证明,使用伪标签的培训可以将触点图估计扩展到域外对象,并在多个数据集中更好地概括。

Despite the recent efforts in accurate 3D annotations in hand and object datasets, there still exist gaps in 3D hand and object reconstructions. Existing works leverage contact maps to refine inaccurate hand-object pose estimations and generate grasps given object models. However, they require explicit 3D supervision which is seldom available and therefore, are limited to constrained settings, e.g., where thermal cameras observe residual heat left on manipulated objects. In this paper, we propose a novel semi-supervised framework that allows us to learn contact from monocular images. Specifically, we leverage visual and geometric consistency constraints in large-scale datasets for generating pseudo-labels in semi-supervised learning and propose an efficient graph-based network to infer contact. Our semi-supervised learning framework achieves a favourable improvement over the existing supervised learning methods trained on data with `limited' annotations. Notably, our proposed model is able to achieve superior results with less than half the network parameters and memory access cost when compared with the commonly-used PointNet-based approach. We show benefits from using a contact map that rules hand-object interactions to produce more accurate reconstructions. We further demonstrate that training with pseudo-labels can extend contact map estimations to out-of-domain objects and generalise better across multiple datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源