论文标题

物理知识的参数化基本图的机器学习

Physics-informed Machine Learning of Parameterized Fundamental Diagrams

论文作者

Koch, James, Maxner, Thomas, Amatya, Vinay, Ranjbari, Andisheh, Dowling, Chase

论文摘要

基本图描述了某些道路(或道路)配置的速度,流量和密度之间的关系。但是,这些图通常不会反映出有关速度流关系如何随着外源变量(例如路缘配置,天气或其他外源性上下文信息)的函数而变化的信息。在本文中,我们提出了一种机器学习方法,该方法尊重已知的工程限制和道路通量的物理定律 - 那些在基本图中捕获的方法 - 并显示如何将其用于将上下文信息引入这些图的生成中。与神经普通微分方程(神经ODES)的探针车辆轨迹重建问题一起配制了建模任务。通过提出的方法,我们将基本图扩展到具有潜在障碍交通数据的非理想道路段。对于模拟数据,我们通过在学习阶段引入上下文信息,即车辆组成,驾驶员行为,遏制分区配置等来概括这种关系,并展示速度流关系如何随着道路设计而变化而变化。

Fundamental diagrams describe the relationship between speed, flow, and density for some roadway (or set of roadway) configuration(s). These diagrams typically do not reflect, however, information on how speed-flow relationships change as a function of exogenous variables such as curb configuration, weather or other exogenous, contextual information. In this paper we present a machine learning methodology that respects known engineering constraints and physical laws of roadway flux - those that are captured in fundamental diagrams - and show how this can be used to introduce contextual information into the generation of these diagrams. The modeling task is formulated as a probe vehicle trajectory reconstruction problem with Neural Ordinary Differential Equations (Neural ODEs). With the presented methodology, we extend the fundamental diagram to non-idealized roadway segments with potentially obstructed traffic data. For simulated data, we generalize this relationship by introducing contextual information at the learning stage, i.e. vehicle composition, driver behavior, curb zoning configuration, etc, and show how the speed-flow relationship changes as a function of these exogenous factors independent of roadway design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源