论文标题

使用实时量子krylov子空间算法快速前进的量子模拟

Fast-forwarding quantum simulation with real-time quantum Krylov subspace algorithms

论文作者

Cortes, Cristian L., DePrince, A. Eugene, Gray, Stephen K.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Quantum subspace diagonalization (QSD) algorithms have emerged as a competitive family of algorithms that avoid many of the optimization pitfalls associated with parameterized quantum circuit algorithms. While the vast majority of the QSD algorithms have focused on solving the eigenpair problem for ground, excited-state, and thermal observable estimation, there has been a lot less work in considering QSD algorithms for the problem of quantum dynamical simulation. In this work, we propose several quantum Krylov fast-forwarding (QKFF) algorithms capable of predicting long-time dynamics well beyond the coherence time of current quantum hardware. Our algorithms use real-time evolved Krylov basis states prepared on the quantum computer and a multi-reference subspace method to ensure convergence towards high-fidelity, long-time dynamics. In particular, we show that the proposed multi-reference methodology provides a systematic way of trading off circuit depth with classical post-processing complexity. We also demonstrate the efficacy of our approach through numerical implementations for several quantum chemistry problems including the calculation of the auto-correlation and dipole moment correlation functions

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源