论文标题

在$ n_f = 2+1+1 $ lattice qcd的连续性极限下,非扰动性重新归一化的核定核子动量分数

Nonperturbatively Renormalized Nucleon Gluon Momentum Fraction in the Continuum Limit of $N_f=2+1+1$ Lattice QCD

论文作者

Fan, Zhouyou, Lin, Huey-Wen, Zeilbeck, Matthew

论文摘要

我们使用MILC协作产生的高度改进的交错夸克(HISQ)的合奏介绍了非扰动的核定核子gluon动量分数。该计算是使用三叶草费米子(Clover Fermions)进行的,该速率动作具有三个斜向质量,$ 220 $,$ 310 $和$ 690 $ MEV和三个晶格间距,0.09、0.12和0.15 FM。使用RI/MOM非扰动重新归一化和使用群集分解误差减少(CDER)进行重新归一化,以增强重新归一化常数的信噪比。我们发现,在晶格量更大的晶格集合中,CDR技术对于改善信号特别重要。我们将gluon动量分数推迟到连续的物理极限,并获得$ \ langle x \ rangle_g = 0.492(52)_ \ text {stat。+npr}(stat。非扰动的重新归一化,而后者的系统解释了忽略夸克混合。我们的Gluon动量分数与物理质质质量的其他近期晶状体QCD结果一致。

We present the nonperturbatively renormalized nucleon gluon momentum fraction using ensembles with $2+1+1$ flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration. The calculation is done using clover fermions for the valence action with three pion masses, $220$, $310$ and $690$ MeV and three lattice spacings, 0.09, 0.12, and 0.15 fm. The renormalization is done using RI/MOM nonperturbative renormalization and using cluster-decomposition error reduction (CDER) to enhance the signal-to-noise ratio of the renormalization constant. We find the CDER technique is particularly important to improve the signal at the finer lattice ensembles where the lattice volume is larger. We extrapolate the gluon momentum fraction to the continuum-physical limit and obtain $\langle x \rangle_g = 0.492(52)_\text{stat.+NPR}(49)_\text{mixing}$ in the $\bar{\text{MS}}$ scheme at 2 GeV, where first error includes the statistical error and uncertainties in nonperturbative renormalization, while the latter systematic accounts for ignoring quark mixing. Our gluon momentum fraction is consistent with other recent lattice-QCD results at physical pion mass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源