论文标题

部分可观测时空混沌系统的无模型预测

Experimental realisations of the fractional Schrödinger equation in the temporal domain

论文作者

Liu, Shilong, Zhang, Yingwen, Malomed, Boris A., Karimi, Ebrahim

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The fractional Schrödinger equation (FSE) -- a natural extension of the standard Schrödinger equation -- is the basis of fractional quantum mechanics. It can be obtained by replacing the kinetic-energy operator with a fractional derivative. Here, we report the experimental realisation of an optical FSE for femtosecond laser pulses in the temporal domain. Programmable holograms and the single-shot measurement technique are respectively used to emulate a \textit{Lévy waveguide} and to reconstruct the amplitude and phase of the pulses. Varying the Lévy index of the FSE and the initial pulse, the temporal dynamics is observed in diverse forms, including solitary, splitting and merging pulses, double Airy modes, and ``rain-like'' multi-pulse patterns. Furthermore, the transmission of input pulses carrying a fractional phase exhibits a ``fractional-phase protection'' effect through a regular (non-fractional) material. The experimentally generated fractional time-domain pulses offer the potential for designing optical signal-processing schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源