论文标题
使用上行链路下行链接二元性与CEQ进行频率选择通道的多用户下行链路形成
Multi-user Downlink Beamforming using Uplink Downlink Duality with CEQs for Frequency Selective Channels
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
High-resolution fully digital transceivers are infeasible at millimeter-wave (mmWave) due to their increased power consumption, cost, and hardware complexity. The use of low-resolution converters is one possible solution to realize fully digital architectures at mmWave. In this paper, we consider a setting in which a fully digital base station with constant envelope quantized (CEQ) digital-to-analog converters on each radio frequency chain communicates with multiple single antenna users with individual signal-to-quantization-plus-interference-plus-noise ratio (SQINR) constraints over frequency selective channels. We first establish uplink downlink duality for the system with CEQ hardware constraints and OFDM-based transmission considered in this paper. Based on the uplink downlink duality principle, we present a solution to the multi-user multi-carrier beamforming and power allocation problem that maximizes the minimum SQINR over all users and sub-carriers. We then present a per sub-carrier version of the originally proposed solution that decouples all sub-carriers of the OFDM waveform resulting in smaller sub-problems that can be solved in a parallel manner. Our numerical results based on 3GPP channel models generated from Quadriga demonstrate improvements in terms of ergodic sum rate and ergodic minimum rate over state-of-the-art linear solutions. We also show improved performance over non-linear solutions in terms of the coded bit error rate with the increased flexibility of assigning individual user SQINRs built into the proposed framework.