论文标题

GEOECG:通过Wasserstein Geodesic扰动进行数据增强,以进行稳健心电图预测

GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for Robust Electrocardiogram Prediction

论文作者

Zhu, Jiacheng, Qiu, Jielin, Yang, Zhuolin, Weber, Douglas, Rosenberg, Michael A., Liu, Emerson, Li, Bo, Zhao, Ding

论文摘要

对应用深神网络自动解释和分析12铅心电图(ECG)的兴趣增加了。当前使用机器学习方法的范式通常受标记数据量的限制。对于临床上的数据,这种现象尤其有问题,在这些数据中,根据所需的专业知识和人类努力,规模标签可能耗时且昂贵。此外,深度学习分类器可能容易受到对抗性例子和扰动的影响,例如在医疗,临床试验或保险索赔的背景下应用时,可能会带来灾难性的后果。在本文中,我们提出了一种受生理启发的数据增强方法,以改善基于ECG信号的心脏病检测的鲁棒性。我们通过将数据分布驱动到瓦斯坦斯坦空间中的大地测量中的其他类别来获得增强样品。为了更好地利用领域特定的知识,我们设计了一个基础度量标准,该指标识别基于生理确定的特征的ECG信号之间的差异。从12铅ECG信号中学习,我们的模型能够区分五种心脏条件。我们的结果表明,准确性和鲁棒性的提高,反映了我们数据增强方法的有效性。

There has been an increased interest in applying deep neural networks to automatically interpret and analyze the 12-lead electrocardiogram (ECG). The current paradigms with machine learning methods are often limited by the amount of labeled data. This phenomenon is particularly problematic for clinically-relevant data, where labeling at scale can be time-consuming and costly in terms of the specialized expertise and human effort required. Moreover, deep learning classifiers may be vulnerable to adversarial examples and perturbations, which could have catastrophic consequences, for example, when applied in the context of medical treatment, clinical trials, or insurance claims. In this paper, we propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals. We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space. To better utilize domain-specific knowledge, we design a ground metric that recognizes the difference between ECG signals based on physiologically determined features. Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions. Our results demonstrate improvements in accuracy and robustness, reflecting the effectiveness of our data augmentation method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源