论文标题
通过动态校正来稳健的非绝热几何量子计算
Robust nonadiabatic geometric quantum computation by dynamical correction
论文作者
论文摘要
除固有的噪声弹性特性外,非绝热几何阶段具有快速进化性质,因此自然可以用于构建具有出色性能的量子门,即所谓的非绝热几何量子计算(NGQC)。但是,由于实现的局限性,以前的单循环NGQC方案对操作控制错误(即$ x $错误)敏感。在这里,我们提出了一个可靠的NGQC与动力学校正技术结合的方案,该方案仍然仅使用简化的脉冲,因此是实验友好的。我们从数值上表明,我们的方案可以大大提高先前协议中的门鲁棒性,从而保留几何阶段的内在优点。此外,由于$ z $错误,我们可以合并无腐蚀的子空间编码策略。这样,我们的方案可以与两种类型的错误相对强大。最后,我们还建议如何使用实验证明的技术对超导量子电路进行编码来实施该方案。因此,由于固有的鲁棒性,我们的方案为将来的可扩展性易受压力量子计算提供了有希望的交替。
Besides the intrinsic noise resilience property, nonadiabatic geometric phases are of the fast evolution nature, and thus can naturally be used in constructing quantum gates with excellent performance, i.e., the so-called nonadiabatic geometric quantum computation (NGQC). However, previous single-loop NGQC schemes are sensitive to the operational control error, i.e., the $X$ error, due to the limitations of the implementation. Here, we propose a robust scheme for NGQC combining with the dynamical correction technique, which still uses only simplified pulses, and thus being experimental friendly. We numerically show that our scheme can greatly improve the gate robustness in previous protocols, retaining the intrinsic merit of geometric phases. Furthermore, to fight against the dephasing noise, due to the $Z$ error, we can incorporate the decoherence-free subspace encoding strategy. In this way, our scheme can be robust against both types of errors. Finally, we also propose how to implement the scheme with encoding on superconducting quantum circuits with experimentally demonstrated technology. Therefore, due to the intrinsic robustness, our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.