论文标题
对流问题的跨部时间减少时间收敛:傅立叶分析的观点
Multigrid reduction-in-time convergence for advection problems: A Fourier analysis perspective
论文作者
论文摘要
在平行社区中的一个长期问题是,双曲线偏微分方程(PDES)的标准迭代平行时间方法的收敛性不佳,而对于较广泛为主导的PDE。在这里,局部傅立叶分析(LFA)收敛理论是针对迭代平行时间降低时间(MGRIT)的迭代平行方法的两级变体的。这种封闭形式的理论允许对以对流为主的PDE的不良收敛性进行新的见解,当时使用标准方法重新降低了粗网格上的细网格问题。具体而言,我们表明,这种不足的收敛至少部分是由于对某些称为特征成分的某些平滑傅立叶模式的粗网格校正不足,该模式以前被确定为导致稳态平流对流式主导式PDE的经典空间多机的收敛性不佳。我们应用这种收敛理论来表明,对于某些半拉格朗日对流问题的离散化,使用重新凝固的粗网格操作员进行的麦格丽特收敛在CFL数字或粗糙因子方面不能稳健。该分析的结果是,可以在MGRIT上下文中重新使用用于改善空间多机上环境中收敛的技术,以开发出更强大的平行时间求解器。该策略在最近的工作中已被使用,其作用很大。在这里,我们提供了支持这种方法有效性的理论证据。
A long-standing issue in the parallel-in-time community is the poor convergence of standard iterative parallel-in-time methods for hyperbolic partial differential equations (PDEs), and for advection-dominated PDEs more broadly. Here, a local Fourier analysis (LFA) convergence theory is derived for the two-level variant of the iterative parallel-in-time method of multigrid reduction-in-time (MGRIT). This closed-form theory allows for new insights into the poor convergence of MGRIT for advection-dominated PDEs when using the standard approach of rediscretizing the fine-grid problem on the coarse grid. Specifically, we show that this poor convergence arises, at least in part, from inadequate coarse-grid correction of certain smooth Fourier modes known as characteristic components, which was previously identified as causing poor convergence of classical spatial multigrid on steady-state advection-dominated PDEs. We apply this convergence theory to show that, for certain semi-Lagrangian discretizations of advection problems, MGRIT convergence using rediscretized coarse-grid operators cannot be robust with respect to CFL number or coarsening factor. A consequence of this analysis is that techniques developed for improving convergence in the spatial multigrid context can be re-purposed in the MGRIT context to develop more robust parallel-in-time solvers. This strategy has been used in recent work to great effect; here, we provide further theoretical evidence supporting the effectiveness of this approach.