论文标题
魔术角模型中平坦带的精细结构
Fine structure of flat bands in a chiral model of magic angles
论文作者
论文摘要
我们根据Becker-embree-embree-embree--- wittsten-zworski介绍的框架,分析了tarnopolsky-kruchkov- kruchkov- kruchkov-vishwanath手性模型的魔法角度的对称性。我们表明,第一个Bloch特征值从狄拉克点上消失,这意味着它在所有动静中都消失了,这就是平坦的乐队的存在。我们还展示了平面频带的多样性与Bloch特征函数的节点集有关。我们以两个有关平坦带的结构的数值观察来结束。
We analyze symmetries of Bloch eigenfunctions at magic angles for the Tarnopolsky--Kruchkov--Vishwanath chiral model of the twisted bilayer graphene (TBG) following the framework introduced by Becker--Embree--Wittsten--Zworski. We show that vanishing of the first Bloch eigenvalue away from the Dirac points implies its vanishing at all momenta, that is the existence of a flat band. We also show how the multiplicity of the flat band is related to the nodal set of the Bloch eigenfunctions. We conclude with two numerical observations about the structure of flat bands.