论文标题
ctooth+:大规模的牙锥计算机断层扫描数据集和用于牙齿体积分割的基准
CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation
论文作者
论文摘要
准确的牙齿体积分割是计算机辅助牙科分析的先决条件。基于深度学习的牙齿分割方法已经达到了令人满意的表现,但需要大量的牙齿数据。公开可用的牙科数据是有限的,这意味着无法在临床实践中复制,评估和应用现有方法。在本文中,我们建立了一个3D Dental CBCT数据集Ctooth+,具有22个完全注释的体积和146个未标记的体积。我们进一步评估了基于完全监督的学习,半监督学习和积极学习的几种最先进的牙齿量细分策略,并定义了绩效原则。这项工作为牙齿体积分割任务提供了新的基准,并且该实验可以作为未来基于AI的牙科成像研究和临床应用开发的基线。
Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development.