论文标题

数据融合:理论,方法和应用

Data Fusion: Theory, Methods, and Applications

论文作者

Gagolewski, Marek

论文摘要

复杂数据的正确融合对于许多领域的许多研究人员都引起了人们的关注缺少值,数据重复数据删除和合并,跨异构数据库的记录链接以及聚类。这项开放访问研究专着使用良好的经典聚合框架的方法将分散的范围从不同的领域融为一体,将研究人员和从业人员介绍给聚合2.0,并指出了进一步研究的挑战和有趣的方向。

A proper fusion of complex data is of interest to many researchers in diverse fields, including computational statistics, computational geometry, bioinformatics, machine learning, pattern recognition, quality management, engineering, statistics, finance, economics, etc. It plays a crucial role in: synthetic description of data processes or whole domains, creation of rule bases for approximate reasoning tasks, reaching consensus and selection of the optimal strategy in decision support systems, imputation of missing values, data deduplication and consolidation, record linkage across heterogeneous databases, and clustering. This open-access research monograph integrates the spread-out results from different domains using the methodology of the well-established classical aggregation framework, introduces researchers and practitioners to Aggregation 2.0, as well as points out the challenges and interesting directions for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源