论文标题
长dirichlet多项式的二次曲折的平均值
Averages of quadratic twists of long Dirichlet polynomials
论文作者
论文摘要
我们研究了由kronecker符号扭曲的长dirichlet多项式的平均值,我们将结果与[CFKRS]的配方进行了比较。如果多项式的长度是较小的尺度缩放参数的幂,那么我们能够计算这些平均值,而在lindelöf假设的假设上,对于二次字符的$ l $ functions,我们表明答案与此食谱一致。就配方而言,这对应于验证0和1-S-swap项。
We investigate averages of long Dirichlet polynomials twisted by Kronecker symbols and we compare our result with the recipe of [CFKRS]. We are able to compute these averages in the case that the length of the polynomial is a power less than 2 of the basic scaling parameter on the assumption of the Lindelöf Hypothesis for $L$-functions of quadratic characters, and we show that the answer is consistent with this recipe. This corresponds, in terms of the recipe, to verifying 0- and 1-swap terms.