论文标题

多行为推荐的粗到1个知识增强的多息学习框架

Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for Multi-Behavior Recommendation

论文作者

Meng, Chang, Zhao, Ziqi, Guo, Wei, Zhang, Yingxue, Wu, Haolun, Gao, Chen, Li, Dong, Li, Xiu, Tang, Ruiming

论文摘要

在大多数现实世界中的推荐方案中,多种行为(例如,单击,添加到购物车,采购等)的多类型,这对于学习用户的多方面偏好是有益的。由于依赖性通过多种类型的行为明确表现出来,因此有效地对复杂行为依赖性进行建模对于多行为预测至关重要。最先进的多行为模型以所有历史相互作用作为输入学习行为依赖性。但是,不同的行为可能反映了用户偏好的不同方面,这意味着某些无关的互动可能会在预测目标行为的声音中发挥作用。为了解决上述局限性,我们向多行为的建议介绍了多功能学习。更具体地说,我们提出了一个新颖的粗到五个知识增强的多功能学习(CKML)框架,以学习不同行为的共享和特定于行为的利益。 CKML引入了两个高级模块,即提取(CIE)和细粒度的行为相关性(FBC),它们共同起作用以捕获细粒度的行为依赖性。 CIE使用知识感知信息来提取每种兴趣的初始表示。 FBC结合了动态路由方案,以在兴趣之间进一步分配每个行为。此外,我们使用自我注意的机制将不同的行为信息在兴趣水平上关联。三个现实世界数据集的经验结果验证了我们模型利用多行为数据的有效性和效率。进一步的实验证明了每个模块的有效性以及多行为数据共享和特定建模范式的鲁棒性和优越性。

Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios, which are beneficial to learn users' multi-faceted preferences. As dependencies are explicitly exhibited by the multiple types of behaviors, effectively modeling complex behavior dependencies is crucial for multi-behavior prediction. The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input. However, different behaviors may reflect different aspects of user preference, which means that some irrelevant interactions may play as noises to the target behavior to be predicted. To address the aforementioned limitations, we introduce multi-interest learning to the multi-behavior recommendation. More specifically, we propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning (CKML) framework to learn shared and behavior-specific interests for different behaviors. CKML introduces two advanced modules, namely Coarse-grained Interest Extracting (CIE) and Fine-grained Behavioral Correlation (FBC), which work jointly to capture fine-grained behavioral dependencies. CIE uses knowledge-aware information to extract initial representations of each interest. FBC incorporates a dynamic routing scheme to further assign each behavior among interests. Additionally, we use the self-attention mechanism to correlate different behavioral information at the interest level. Empirical results on three real-world datasets verify the effectiveness and efficiency of our model in exploiting multi-behavior data. Further experiments demonstrate the effectiveness of each module and the robustness and superiority of the shared and specific modelling paradigm for multi-behavior data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源