论文标题

带有逐步初始数据的复杂MKDV方程:大渐近分析

The complex mKdV equation with step-like initial data: Large time asymptotic analysis

论文作者

Wang, Zhaoyu, Xu, Kai, Fan, Engui

论文摘要

在本文中,我们研究了复杂修改的korteveg-de vries方程\ begin {等式} u_t + _t + \ frac {1} {2} u_ {xxx} +3 | u | u |^2 u_x = 0,\ eent e e e y_t e e e e e e e n e e e e End} u_t vries方程\ frac {1} {2} u_t = 0,与步进的初始数据= 0 {equatization platike}, \ begin {case} 0,&{x \ ge 0,} \\ a e^{ibx},&{x <0.} \ end {cases} \ end {case} \ end {equation},这表明可以通过matrix riemann-hilbert问题来描述类似阶梯的初始问题。我们采用最陡峭的下降方法来获得Zakharov-Manakov区域,平面波区域和缓慢衰减区域的不同大渐近造物。

In this paper, we study large-time asymptotics for the complex modified Korteveg-de Vries equation \begin{equation} u_t + \frac{1}{2}u_{xxx}+3|u|^2 u_x=0, \end{equation} with the step-like initial data \begin{equation} u(x,0)=u_0(x)= \begin{cases} 0, & {x \ge 0,}\\ A e^{iBx}, &{x < 0.} \end{cases} \end{equation} It is shown that the step-like initial problem can be described by a matrix Riemann-Hilbert problem. We apply the steepest descent method to obtain different large-time asymptotics in the the Zakharov-Manakov region, a plane wave region and a slow decay region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源