论文标题
符号优化和一维QCD中的复杂鞍点
Sign optimization and complex saddle points in one-dimensional QCD
论文作者
论文摘要
我们使用符号优化框架研究有限夸克密度的一维QCD。通过将路径积分域变形(3)$变形到复杂的一个$ {\ cal m} \ subset sl(3)$,从而减轻了费用标志问题,该$ su(3)$明确构造了,以减少相位波动。使用$ su(3)$的角表示构建络合力。我们从复杂的鞍点方面对优化过程提供了物理解释。这张图将标志优化框架连接到广义的Lefschetz Thimbles。
We study one-dimensional QCD at finite quark density by using the sign optimization framework. The fermion sign problem is mitigated by deforming the path integral domain, $SU(3)$ to a complexified one ${\cal M} \subset SL(3)$, explicitly constructed to reduce the phase fluctuations. The complexification is constructed using the angular representation of $SU(3)$. We provide a physical explanation of the optimization procedure in terms of complex saddle points. This picture connects the sign optimization framework to the generalized Lefschetz thimbles.