论文标题

符号优化和一维QCD中的复杂鞍点

Sign optimization and complex saddle points in one-dimensional QCD

论文作者

Basar, Gokce, Marincel, Joesph

论文摘要

我们使用符号优化框架研究有限夸克密度的一维QCD。通过将路径积分域变形(3)$变形到复杂的一个$ {\ cal m} \ subset sl(3)$,从而减轻了费用标志问题,该$ su(3)$明确构造了,以减少相位波动。使用$ su(3)$的角表示构建络合力。我们从复杂的鞍点方面对优化过程提供了物理解释。这张图将标志优化框架连接到广义的Lefschetz Thimbles。

We study one-dimensional QCD at finite quark density by using the sign optimization framework. The fermion sign problem is mitigated by deforming the path integral domain, $SU(3)$ to a complexified one ${\cal M} \subset SL(3)$, explicitly constructed to reduce the phase fluctuations. The complexification is constructed using the angular representation of $SU(3)$. We provide a physical explanation of the optimization procedure in terms of complex saddle points. This picture connects the sign optimization framework to the generalized Lefschetz thimbles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源