论文标题
Floquet拓扑问题中的纠缠光谱和熵
Entanglement spectrum and entropy in Floquet topological matter
论文作者
论文摘要
纠缠是量子系统最基本的特征之一。在这项工作中,我们获得了弗洛克(Floquet)非相互作用的费米子晶格模型的纠缠光谱和熵,并使用浮雕拓扑阶段建立连接。引入了拓扑绕组和Chern数字,以表征纠缠频谱和本征模。在周期性边界条件下和拓扑边缘状态下,在开放边界条件下,纠缠哈密顿量的光谱和拓扑之间的对应关系得到了进一步的建立。该理论应用于不同对称类别和空间维度中的浮光拓扑绝缘子。因此,我们的工作为研究Floquet拓扑问题的丰富纠缠模式提供了一个有用的框架。
Entanglement is one of the most fundamental features of quantum systems. In this work, we obtain the entanglement spectrum and entropy of Floquet noninteracting fermionic lattice models and build their connections with Floquet topological phases. Topological winding and Chern numbers are introduced to characterize the entanglement spectrum and eigenmodes. Correspondences between the spectrum and topology of entanglement Hamiltonians under periodic boundary conditions and topological edge states under open boundary conditions are further established. The theory is applied to Floquet topological insulators in different symmetry classes and spatial dimensions. Our work thus provides a useful framework for the study of rich entanglement patterns in Floquet topological matter.