论文标题

重新 - QGAN:一个优化的对抗量子电路学习框架

Re-QGAN: an optimized adversarial quantum circuit learning framework

论文作者

Nguemto, Sandra, Leyton-Ortega, Vicente

论文摘要

对抗性学习代表了一种生成数据统计数据的强大技术。由于连接性,量子操作保真度的限制以及对量子处理器的访问有限,因此它在量子计算平台中的成功实现并不直接。在限制量子操作的数量并提供低汇编成本的设计时,我们提出了一种量子生成的对抗网络设计,该设计使用真实的希尔伯特空间作为生成模型的框架,以及一种新的策略,将经典信息编码为量子框架。我们考虑基于变异量子电路的量子发生器和鉴别架体系结构。我们通过立体投影编码经典信息,该信息使我们能够使用整个经典域而无需归一化过程。对于低深度的Ansätze设计,我们将真正的希尔伯特空间视为量子对抗游戏的工作空间。该体系结构可以改善最新的量子生成对抗性,同时保持浅深度量子电路和减少参数集。我们以低资源制度测试了我们的设计,用MNIST作为参考数据集生成手写数字。我们可以生成未发现的数据(数字),只有15个时期在2、3和4 QUAT的真实希尔伯特空间中工作。我们的设计使用基于超导的量子处理器建立的本机量子操作,并与基于离子捕获的架构兼容。

Adversarial learning represents a powerful technique for generating data statistics. Its successful implementation in quantum computational platforms is not straightforward due to limitations in connectivity, quantum operation fidelity, and limited access to the quantum processor for statistically relevant results. Constraining the number of quantum operations and providing a design with a low compilation cost, we propose a quantum generative adversarial network design that uses real Hilbert spaces as the framework for the generative model and a novel strategy to encode classical information into the quantum framework. We consider quantum generator and discriminator architectures based on a variational quantum circuit. We encode classical information by the stereographic projection, which allows us to use the entire classical domain without normalization procedures. For low-depth ansätze designs, we consider the real Hilbert space as the working space for the quantum adversarial game. This architecture improves state-of-the-art quantum generative adversarial performance while maintaining a shallow-depth quantum circuit and a reduced parameter set. We tested our design in a low resource regime, generating handwritten digits with the MNIST as the reference dataset. We could generate undetected data (digits) with just 15 epochs working in the real Hilbert space of 2, 3, and 4 qubits. Our design uses native quantum operations established in superconducting-based quantum processors and is compatible with ion-trapped-based architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源