论文标题

欧几里得准备。 xxiv。 $λ(ν)$ CDM宇宙学中光晕质量功能的校准

Euclid preparation. XXIV. Calibration of the halo mass function in $Λ(ν)$CDM cosmologies

论文作者

Euclid Collaboration, Castro, T., Fumagalli, A., Angulo, R. E., Bocquet, S., Borgani, S., Carbone, C., Dakin, J., Dolag, K., Giocoli, C., Monaco, P., Ragagnin, A., Saro, A., Sefusatti, E., Costanzi, M., Brun, A. M. C. Le, Corasaniti, P. -S., Amara, A., Amendola, L., Baldi, M., Bender, R., Bodendorf, C., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillis, B., Grazian, A., Grupp, F., Haugan, S. V. H., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Kermiche, S., Kitching, T., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lloro, I., Mansutti, O., Marggraf, O., Marulli, F., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Saglia, R., Sapone, D., Sartoris, B., Schneider, P., Seidel, G., Sirri, G., Stanco, L., Crespí, P. Tallada, Taylor, A. N., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Andreon, S., Bardelli, S., Bozzo, E., Colodro-Conde, C., Di Ferdinando, D., Farina, M., Graciá-Carpio, J., Lindholm, V., Neissner, C., Scottez, V., Tenti, M., Zucca, E., Baccigalupi, C., Balaguera-Antolínez, A., Ballardini, M., Bernardeau, F., Biviano, A., Blanchard, A., Borlaff, A. S., Burigana, C., Cabanac, R., Cappi, A., Carvalho, C. S., Casas, S., Castignani, G., Cooray, A., Coupon, J., Courtois, H. M., Davini, S., De Lucia, G., Desprez, G., Dole, H., Escartin, J. A., Escoffier, S., Finelli, F., Ganga, K., Garcia-Bellido, J., George, K., Gozaliasl, G., Hildebrandt, H., Hook, I., Ilić, S., Kansal, V., Keihanen, E., Kirkpatrick, C. C., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Maoli, R., Marcin, S., Martinelli, M., Martinet, N., Matthew, S., Maturi, M., Metcalf, R. B., Morgante, G., Nadathur, S., Nucita, A. A., Patrizii, L., Peel, A., Popa, V., Porciani, C., Potter, D., Pourtsidou, A., Pöntinen, M., Sánchez, A. G., Sakr, Z., Schirmer, M., Sereno, M., Mancini, A. Spurio, Teyssier, R., Valiviita, J., Veropalumbo, A., Viel, M.

论文摘要

Euclid的光度星系群集调查具有非常有竞争力的宇宙学探测。与簇观察的主要宇宙学探针是它们的数量计数,其中光晕质量函数(HMF)是关键的理论数量。我们以该数量不确定性所需的准确性和精确度的水平提出了对分析性HMF的新校准,以使其相对于其他不确定性来源在从欧几里得集群数中恢复宇宙学参数方面具有亚分性。通过使用贝叶斯方法来考虑由仿真中的数值效应引起的系统误差,使用贝叶斯方法对我们的模拟套件进行校准。首先,我们通过使用带有不同级别的Lagrangian扰动理论的初始条件,并采用不同的模拟盒大小和质量分辨率来测试来自不同N体代码的HMF预测的收敛性。然后,我们量化了使用不同的晕圈算法的效果,以及所产生的差异如何传播到宇宙学约束。为了追踪HMF中对普遍性的侵犯,我们还基于以不同光谱指数为特征的初始条件分析模拟,假设Einstein-保姆和标准的$ CDM扩展历史。基于这些结果,我们为HMF构建了一个拟合函数,我们证明,在复制$λ$ CDM模型的9种不同变体的结果中,我们证明了次级准确的结果。相对于未来的群众观察关系的预期精度,校准系统的不确定性在很大程度上是卑鄙的。除了光环查找器引起的效果外,唯一值得注意的可能导致宇宙学的偏见。

Euclid's photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo-finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein--de Sitter and standard $Λ$CDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the $Λ$CDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass-observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源