论文标题

核物理不确定性在光超肺中

Nuclear physics uncertainties in light hypernuclei

论文作者

Gazda, D., Htun, T. Yadanar, Forssén, C.

论文摘要

光超肺的能量水平是实验可访问的可观察物,其中包含有关超子与核子之间相互作用的有价值的信息。在这项工作中,我们研究陌生性$ s = -1 $ systems $^{3,4}_λ$ h和$^{4,5}_λ$ He使用Ab Initible无核心壳模型(NCSM),并从手性有效领域理论($χ$ eft)获得现实的交互。特别是,我们量化了可以归因于核物理不确定性的理论预测的有限精度。我们研究了多体问题(方法不确定性)解决方案的收敛性,以及核$χ$ eft Hamiltonian(模型不确定性)的调节剂和校准数据依赖性。对于前者,我们实施红外校正公式,并推断有限空间NCSM结果到无限模型空间。然后,我们使用贝叶斯参数估计来量化所得的方法不确定性。对于后者,我们采用了一个由42个现实的哈密顿人组成的家族,并衡量预测的标准偏差,同时保持领先的超核核电相互作用固定。遵循此过程,我们发现地面$λ$分离能的模型不确定性达到$ \ sim 20(100)$ kev in $^3_λ$ h($^4_λ$ h,He)和$ \ sim 400 $ kev in $^5_λ$ He。对于$^4_λ$ h,$ 1^+$兴奋状态和$^5_λ$ HE,方法不确定性的数量幅度可比性,这些$^+$ he是在有限的模型空间中计算的,但否则要小得多。这种对预期理论精确度的知识对于使用光超核中的结合能来推断难以捉摸的超核相互作用至关重要。

The energy levels of light hypernuclei are experimentally accessible observables that contain valuable information about the interaction between hyperons and nucleons. In this work we study strangeness $S = -1$ systems $^{3,4}_Λ$H and $^{4,5}_Λ$He using the ab initio no-core shell model (NCSM) with realistic interactions obtained from chiral effective field theory ($χ$EFT). In particular, we quantify the finite precision of theoretical predictions that can be attributed to nuclear physics uncertainties. We study both the convergence of the solution of the many-body problem (method uncertainty) and the regulator- and calibration data-dependence of the nuclear $χ$EFT Hamiltonian (model uncertainty). For the former, we implement infrared correction formulas and extrapolate finite-space NCSM results to infinite model space. We then use Bayesian parameter estimation to quantify the resulting method uncertainties. For the latter, we employ a family of 42 realistic Hamiltonians and measure the standard deviation of predictions while keeping the leading-order hyperon-nucleon interaction fixed. Following this procedure we find that model uncertainties of ground-state $Λ$ separation energies amount to $\sim 20(100)$ keV in $^3_Λ$H($^4_Λ$H,He) and $\sim 400$ keV in $^5_Λ$He. Method uncertainties are comparable in magnitude for the $^4_Λ$H,He $1^+$ excited states and $^5_Λ$He, which are computed in limited model spaces, but otherwise much smaller. This knowledge of expected theoretical precision is crucial for the use of binding energies of light hypernuclei to infer the elusive hyperon-nucleon interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源