论文标题
局部恒星辐射和尘埃耗竭对非平衡星际化学的影响
The effects of local stellar radiation and dust depletion on non-equilibrium interstellar chemistry
论文作者
论文摘要
星际化学对于银河系的形成很重要,因为它决定了气体冷却的速率,并使我们能够对来自离子和分子的可观察光谱线进行预测。我们探讨了建模星际介质(ISM)化学性质的两个核心方面:(1)局部恒星辐射的影响,这些恒星辐射会使气体电离和加热气体,以及(2)金属耗尽到粉尘晶粒上,从而减少了气相中金属丰度。我们使用Fire Galaxy地层模型以及钟声非平衡化学和冷却模块,对孤立的圆盘星系进行高分辨率(400 m $ _ \ odot $)模拟,从矮人到银河系质量。在我们的基准模型中,我们使用近似辐射转移方案将化学作用与从星粒子计算出的恒星通量,并实施了金属消耗的经验密度依赖性处方。为了进行比较,我们还以空间均匀的辐射场进行模拟,而没有金属耗竭。我们的基准模型广泛地重现了恒星质量的HI和H2质量的观察趋势,以及[CII] 158 $μ$ M,[OI] 63 $ $ M,[OIIII] 88 $ M $ M,[NII] 122 $ M $ M $ M M and H $ 656563A的线条和恒星形成率。我们具有均匀辐射场的模拟预测了较弱的发光度,最多可用于[OIII] 88 $μ$ M和H $α$ 6563A的数量级,而忽略金属耗尽会增加碳和氧气线的亮度,使因子$ \ 2 $ \ $ \ 2。然而,除非在矮星系中,局部恒星通量或金属耗竭并不严重影响银河系的总体演变,除非在矮星系中,其中包含局部通量会导致流出较弱,从而导致较高的气体部分。
Interstellar chemistry is important for galaxy formation, as it determines the rate at which gas can cool, and enables us to make predictions for observable spectroscopic lines from ions and molecules. We explore two central aspects of modelling the chemistry of the interstellar medium (ISM): (1) the effects of local stellar radiation, which ionises and heats the gas, and (2) the depletion of metals onto dust grains, which reduces the abundance of metals in the gas phase. We run high-resolution (400 M$_\odot$ per baryonic particle) simulations of isolated disc galaxies, from dwarfs to Milky Way-mass, using the FIRE galaxy formation models together with the CHIMES non-equilibrium chemistry and cooling module. In our fiducial model, we couple the chemistry to the stellar fluxes calculated from star particles using an approximate radiative transfer scheme, and we implement an empirical density-dependent prescription for metal depletion. For comparison, we also run simulations with a spatially uniform radiation field, and without metal depletion. Our fiducial model broadly reproduces observed trends in HI and H2 mass with stellar mass, and in line luminosity versus star formation rate for [CII] 158$μ$m, [OI] 63$μ$m, [OIII] 88$μ$m, [NII] 122$μ$m and H$α$ 6563A. Our simulations with a uniform radiation field predict fainter luminosities, by up to an order of magnitude for [OIII] 88$μ$m and H$α$ 6563A, while ignoring metal depletion increases the luminosity of carbon and oxygen lines by a factor $\approx$2. However, the overall evolution of the galaxy is not strongly affected by local stellar fluxes or metal depletion, except in dwarf galaxies where the inclusion of local fluxes leads to weaker outflows and hence higher gas fractions.