论文标题

学习快速,精确的像素到扭矩控制

Learning Fast and Precise Pixel-to-Torque Control

论文作者

Bleher, Steffen, Heim, Steve, Trimpe, Sebastian

论文摘要

在该领域,机器人通常需要在未知和非结构化的环境中操作,在这种环境中,准确的感应和状态估计(SE)成为主要挑战。相机已被用于在此类环境中以及复杂但准静态任务(例如抓紧)中的映射和计划方面取得巨大成功,但很少将其集成到不稳定系统的控制循环中。学习像素到扭力的控制有望允许机器人灵活处理多种任务。尽管他们没有添加其他理论障碍,但对需要精确且高的带宽控制控制的不稳定系统的像素到扭力控制仍然构成了重大的实践挑战,并且尚未确定最佳实践。为了帮助推动对学习像素到扭力控制的实践方面的可重复研究,我们提出了一个平台,可以灵活地代表从实验室到部署的整个过程,以学习具有快速,不稳定动态的机器人对像素到扭力的控制:基于视觉的动态:基于视觉的Furuta pendulum。该平台可以使用现成或定制的硬件复制。我们预计该平台将使研究人员能够快速,系统地测试不同的方法,并从其他实验室重现和基准案例研究。据我们所知,我们还使用DNN进行了对该系统的第一个案例研究,这是对不稳定系统学习像素到扭力控制的首次演示,其更新速度比100 Hz更快。可以在https://youtu.be/s2llscfg-8e和补充材料中在线找到视频概述。

In the field, robots often need to operate in unknown and unstructured environments, where accurate sensing and state estimation (SE) becomes a major challenge. Cameras have been used to great success in mapping and planning in such environments, as well as complex but quasi-static tasks such as grasping, but are rarely integrated into the control loop for unstable systems. Learning pixel-to-torque control promises to allow robots to flexibly handle a wider variety of tasks. Although they do not present additional theoretical obstacles, learning pixel-to-torque control for unstable systems that that require precise and high bandwidth control still poses a significant practical challenge, and best practices have not yet been established. To help drive reproducible research on the practical aspects of learning pixel-to-torque control, we propose a platform that can flexibly represent the entire process, from lab to deployment, for learning pixel-to-torque control on a robot with fast, unstable dynamics: the vision-based Furuta pendulum. The platform can be reproduced with either off-the-shelf or custom-built hardware. We expect that this platform will allow researchers to quickly and systematically test different approaches, as well as reproduce and benchmark case studies from other labs. We also present a first case study on this system using DNNs which, to the best of our knowledge, is the first demonstration of learning pixel-to-torque control on an unstable system with update rates faster than 100 Hz. A video synopsis can be found online at https://youtu.be/S2llScfG-8E, and in the supplementary material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源