论文标题
致力于生成大型合成浮游植物数据集,以有效监测有害藻华
Towards Generating Large Synthetic Phytoplankton Datasets for Efficient Monitoring of Harmful Algal Blooms
论文作者
论文摘要
气候变化正在增加有害藻华(HAB)的频率和严重程度,这些藻类在水产养殖场中造成大量鱼类死亡。这有助于海洋污染和温室气体(GHG)的排放,因为死鱼要么被倾倒到海洋中,要么被带到垃圾填埋场,从而对气候产生了负面影响。当前,列举有害藻类和其他浮游植物的标准方法是在显微镜下手动观察并对其进行计数。这是一个耗时,繁琐且容易出错的过程,导致农民的管理决定妥协。因此,自动化此过程以进行快速准确的HAB监控非常有帮助。但是,这需要大量且多样化的浮游植物图像数据集,并且这些数据集很难快速生成。在这项工作中,我们探讨了产生新型高分辨率的逼真的合成浮游植物图像的可行性,其中包含同一图像中的多个物种,给定的真实图像数据集。为此,我们采用生成的对抗网络(GAN)来生成合成图像。我们使用标准图像质量指标评估了三种不同的GAN体系结构:ProjectedGan,Fastgan和styleganv2。我们从经验上展示了仅使用961个真实图像的训练数据集的高保真合成浮游植物图像的产生。因此,这项工作证明了甘斯从小型培训数据集中创建浮游植物的大型合成数据集的能力,从而朝着可持续的系统监测有害藻类绽放的关键一步。
Climate change is increasing the frequency and severity of harmful algal blooms (HABs), which cause significant fish deaths in aquaculture farms. This contributes to ocean pollution and greenhouse gas (GHG) emissions since dead fish are either dumped into the ocean or taken to landfills, which in turn negatively impacts the climate. Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope. This is a time-consuming, tedious and error-prone process, resulting in compromised management decisions by farmers. Hence, automating this process for quick and accurate HAB monitoring is extremely helpful. However, this requires large and diverse datasets of phytoplankton images, and such datasets are hard to produce quickly. In this work, we explore the feasibility of generating novel high-resolution photorealistic synthetic phytoplankton images, containing multiple species in the same image, given a small dataset of real images. To this end, we employ Generative Adversarial Networks (GANs) to generate synthetic images. We evaluate three different GAN architectures: ProjectedGAN, FastGAN, and StyleGANv2 using standard image quality metrics. We empirically show the generation of high-fidelity synthetic phytoplankton images using a training dataset of only 961 real images. Thus, this work demonstrates the ability of GANs to create large synthetic datasets of phytoplankton from small training datasets, accomplishing a key step towards sustainable systematic monitoring of harmful algal blooms.