论文标题
在多域对话状态跟踪中预测行动感知的插槽值
Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking
论文作者
论文摘要
作为面向任务的对话系统中的重要组成部分,对话状态跟踪(DST)旨在跟踪人机相互作用并生成用于管理对话的状态表示。对话状态的表示取决于域本体论和用户的目标。在几个面向任务的对话中,目标范围有限,对话状态可以表示为一组插槽值对。随着对话系统的功能扩展以支持沟通的自然性的增加,将对话行为处理纳入对话模型设计变得至关重要。缺乏此类考虑限制了对话态跟踪模型的可扩展性,以实现特定目标和本体论。为了解决这个问题,我们制定和纳入对话行为,并利用机器阅读理解的最新进展来预测多域对话状态跟踪的分类和非类别类型的插槽。实验结果表明,我们的模型可以提高对话状态跟踪在多沃兹2.1数据集上的整体准确性,并证明合并对话行为可以指导对话状态设计,以实现未来面向任务的对话系统。
As an essential component in task-oriented dialogue systems, dialogue state tracking (DST) aims to track human-machine interactions and generate state representations for managing the dialogue. Representations of dialogue states are dependent on the domain ontology and the user's goals. In several task-oriented dialogues with a limited scope of objectives, dialogue states can be represented as a set of slot-value pairs. As the capabilities of dialogue systems expand to support increasing naturalness in communication, incorporating dialogue act processing into dialogue model design becomes essential. The lack of such consideration limits the scalability of dialogue state tracking models for dialogues having specific objectives and ontology. To address this issue, we formulate and incorporate dialogue acts, and leverage recent advances in machine reading comprehension to predict both categorical and non-categorical types of slots for multi-domain dialogue state tracking. Experimental results show that our models can improve the overall accuracy of dialogue state tracking on the MultiWOZ 2.1 dataset, and demonstrate that incorporating dialogue acts can guide dialogue state design for future task-oriented dialogue systems.