论文标题
定时相关性和量子张量产品结构
Timelike correlations and quantum tensor product structure
论文作者
论文摘要
复合量子系统的状态空间结构是在与局部量子描述兼容的几个数学上一致的可能性中。例如,未进入的格里森定理允许将密度运算符作为所有可能的复合状态的适当子集中的状态空间。然而,从这个更广泛的状态空间中获得的贝尔类型实验中获得的两分相关性是无关的量子模拟,因此,这种空间相关性不好,可以区分不同的组合物。在这项工作中,我们分析了这些不同复合模型的通信实用程序,并表明它们可以在涉及两个玩家的简单通信游戏中导致不同的实用程序。因此,我们的分析确定,超出量子复合结构可以导致及时的场景中的量子相关性超出量子相关性,因此欢迎新的原则将量子相关性与超越量子相关性分离。我们还不行证明,不同此类组合的经典信息承载能力不能超过相应的量子复合系统。
The state space structure for a composite quantum system is postulated among several mathematically consistent possibilities that are compatible with local quantum description. For instance, unentangled Gleason's theorem allows a state space that includes density operators as a proper subset among all possible composite states. However, bipartite correlations obtained in Bell type experiments from this broader state space are in-fact quantum simulable, and hence such spacelike correlations are no good to make distinction among different compositions. In this work we analyze communication utilities of these different composite models and show that they can lead to distinct utilities in a simple communication game involving two players. Our analysis, thus, establishes that beyond quantum composite structure can lead to beyond quantum correlations in timelike scenario and hence welcomes new principles to isolate the quantum correlations from the beyond quantum ones. We also prove a no-go that the classical information carrying capacity of different such compositions cannot be more than the corresponding quantum composite systems.