论文标题

超级黎曼表面的模块中的不良基因座,带有拉蒙德穿刺

The bad locus in the moduli of super Riemann surfaces with Ramond punctures

论文作者

Donagi, Ron, Ott, Nadia

论文摘要

拉蒙德穿刺的超级黎曼表面模量中的不良基因座参数可以参数那些超过预期的独立闭合全体形态1形式的超级黎曼表面。有一个超级时期图取决于某些离散选择。对于每个这样的选择,周期映射沿着包含不良基因座的除数爆炸。我们的主要结果是,远离不良基因座,至少其中一个时期地图仍然有限。换句话说,我们将不良基因座视为爆炸除数的交汇处。证明将情况提取为线性代数中的一个问题,然后我们解决。我们还在不良基因座的维度上给出了一些界限。

The bad locus in the moduli of super Riemann surfaces with Ramond punctures parametrizes those super Riemann surfaces that have more than the expected number of independent closed holomorphic 1-forms. There is a super period map that depends on certain discrete choices. For each such choice, the period map blows up along a divisor that contains the bad locus. Our main result is that away from the bad locus, at least one of these period maps remains finite. In other words, we identify the bad locus as the intersection of the blowup divisors. The proof abstracts the situation into a question in linear algebra, which we then solve. We also give some bounds on the dimension of the bad locus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源