论文标题

AG2U-在不确定性下进行自主分级

AG2U -- Autonomous Grading Under Uncertainties

论文作者

Miron, Yakov, Goldfracht, Yuval, Ross, Chana, Di Castro, Dotan, Klein, Itzik

论文摘要

表面分级是在施工现场管道中的重要任务,这是平衡含有预倾角沙桩的不平衡区域的过程。这种劳动密集型过程通常是由任何建筑工地的关键机械工具的推土机进行的。当前的自动化表面分级的尝试实现了完美的定位。但是,在实际情况下,由于代理人的感知不完善,因此该假设失败了,从而导致性能降低。在这项工作中,我们解决了在不确定性下自动分级的问题。首先,我们实施了模拟和缩放现实世界的原型环境,以在此环境中实现快速的政策探索和评估。其次,我们将问题形式化为部分可观察到的马尔可夫决策过程,并培训能够处理此类不确定性的代理商。我们通过严格的实验表明,在出现本地化不确定性时,经过完美本地化训练的代理人将遭受降低的性能。但是,使用我们的方法培训的代理商将制定更强大的政策来解决此类错误,从而表现出更好的评分性能。

Surface grading, the process of leveling an uneven area containing pre-dumped sand piles, is an important task in the construction site pipeline. This labour-intensive process is often carried out by a dozer, a key machinery tool at any construction site. Current attempts to automate surface grading assume perfect localization. However, in real-world scenarios, this assumption fails, as agents are presented with imperfect perception, which leads to degraded performance. In this work, we address the problem of autonomous grading under uncertainties. First, we implement a simulation and a scaled real-world prototype environment to enable rapid policy exploration and evaluation in this setting. Second, we formalize the problem as a partially observable markov decision process and train an agent capable of handling such uncertainties. We show, through rigorous experiments, that an agent trained under perfect localization will suffer degraded performance when presented with localization uncertainties. However, an agent trained using our method will develop a more robust policy for addressing such errors and, consequently, exhibit a better grading performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源