论文标题

随机量化神经网络的不变表示

Invariant Representations with Stochastically Quantized Neural Networks

论文作者

Cerrato, Mattia, Köppel, Marius, Esposito, Roberto, Kramer, Stefan

论文摘要

代表学习算法提供了学习有关滋扰因素的输入数据不变表示的机会。许多作者利用此类策略来学习公平表示,即消除有关敏感属性信息的向量。这些方法很有吸引力,因为它们可以解释为最大程度地减少神经层的激活与敏感属性之间的相互信息。但是,这种方法的理论基础依赖于无限准确的对手的计算,或者最大程度地减少了相互信息估计的变异上限。在本文中,我们提出了一种直接计算神经层和敏感属性之间相互信息的方法。我们采用随机激活的二进制神经网络,使我们可以将神经元视为随机变量。然后,我们能够在层和敏感属性之间计算(不绑定)层之间的相互信息,并在梯度下降期间使用此信息作为正则化因子。我们表明,在公平表示学习中,该方法与艺术的状态有利,并且与完整的神经网络相比,学习的表示形式显示出更高的不变性水平。

Representation learning algorithms offer the opportunity to learn invariant representations of the input data with regard to nuisance factors. Many authors have leveraged such strategies to learn fair representations, i.e., vectors where information about sensitive attributes is removed. These methods are attractive as they may be interpreted as minimizing the mutual information between a neural layer's activations and a sensitive attribute. However, the theoretical grounding of such methods relies either on the computation of infinitely accurate adversaries or on minimizing a variational upper bound of a mutual information estimate. In this paper, we propose a methodology for direct computation of the mutual information between a neural layer and a sensitive attribute. We employ stochastically-activated binary neural networks, which lets us treat neurons as random variables. We are then able to compute (not bound) the mutual information between a layer and a sensitive attribute and use this information as a regularization factor during gradient descent. We show that this method compares favorably with the state of the art in fair representation learning and that the learned representations display a higher level of invariance compared to full-precision neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源