论文标题

持续学习中重播策略的基准和经验分析

A Benchmark and Empirical Analysis for Replay Strategies in Continual Learning

论文作者

Yang, Qihan, Feng, Fan, Chan, Rosa

论文摘要

凭借持续学习的能力,人类可以在整个生命周期中不断获得知识。但是,一般而言,计算系统不能顺序学习任务。对深神经网络(DNN)的长期挑战称为灾难性遗忘。已经提出了多种解决方案来克服这一限制。本文对内存重播方法进行了深入的评估,从而探讨了选择重播数据时各种采样策略的效率,性能和可扩展性。所有实验均在各个域下的多个数据集上进行。最后,提供了为各种数据分布选择重播方法的实用解决方案。

With the capacity of continual learning, humans can continuously acquire knowledge throughout their lifespan. However, computational systems are not, in general, capable of learning tasks sequentially. This long-standing challenge for deep neural networks (DNNs) is called catastrophic forgetting. Multiple solutions have been proposed to overcome this limitation. This paper makes an in-depth evaluation of the memory replay methods, exploring the efficiency, performance, and scalability of various sampling strategies when selecting replay data. All experiments are conducted on multiple datasets under various domains. Finally, a practical solution for selecting replay methods for various data distributions is provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源