论文标题

计算Lagrangian手段

Computing Lagrangian means

论文作者

Kafiabad, Hossein A., Vanneste, Jacques

论文摘要

拉格朗日平均在分析波 - 融流相互作用和其他多尺度流体现象中起着重要作用。拉格朗日手段的数值计算,例如从仿真数据中,但是具有挑战性。典型的实现需要跟踪大量粒子来构建拉格朗日时间序列,然后使用低通滤波器进行平均。这具有包括大记忆需求,粒子聚类和并行并发症的缺点。我们开发了一种新颖的方法,其中通过求解在连续的平均时间间隔中集成的偏微分方程(PDE)来计算各种领域(包括粒子位置)的拉格朗日平均值。我们提出了两种策略,以它们的空间自变量为特色。第一个概括了Kafiabad的算法(2022,J。FluidMech。940,A2),使用了交流粒子位置;第二个直接使用拉格朗日平均位置。 PDE可以通过多种方式离散,例如使用与管理动态方程相同的离散化,并立即解决以最大程度地减少内存足迹。我们用旋转浅水模型的伪谱实现说明了新方法。将涡流湍流和庞加罗波结合的流动的两种应用表明,拉格朗日平均比欧拉平均的优势 - 涡流分离。

Lagrangian averaging plays an important role in the analysis of wave--mean-flow interactions and other multiscale fluid phenomena. The numerical computation of Lagrangian means, e.g. from simulation data, is however challenging. Typical implementations require tracking a large number of particles to construct Lagrangian time series which are then averaged using a low-pass filter. This has drawbacks that include large memory demands, particle clustering and complications of parallelisation. We develop a novel approach in which the Lagrangian means of various fields (including particle positions) are computed by solving partial differential equations (PDEs) that are integrated over successive averaging time intervals. We propose two strategies, distinguished by their spatial independent variables. The first, which generalises the algorithm of Kafiabad (2022, J. Fluid Mech. 940, A2), uses end-of-interval particle positions; the second directly uses the Lagrangian mean positions. The PDEs can be discretised in a variety of ways, e.g. using the same discretisation as that employed for the governing dynamical equations, and solved on-the-fly to minimise the memory footprint. We illustrate the new approach with a pseudospectral implementation for the rotating shallow-water model. Two applications to flows that combine vortical turbulence and Poincare waves demonstrate the superiority of Lagrangian averaging over Eulerian averaging for wave--vortex separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源