论文标题

移动:通过嵌入式外部功能有效且无害所有权验证

MOVE: Effective and Harmless Ownership Verification via Embedded External Features

论文作者

Li, Yiming, Zhu, Linghui, Jia, Xiaojun, Bai, Yang, Jiang, Yong, Xia, Shu-Tao, Cao, Xiaochun, Ren, Kui

论文摘要

当前,深度神经网络(DNN)在不同的应用中广泛采用。尽管具有商业价值,但培训表现出色的DNN仍在资源消费。因此,训练有素的模型是其所有者的宝贵知识产权。但是,最近的研究揭示了模型窃取的威胁,即使他们只能查询模型,对手也可以获得受害者模型的功能相似的副本。在本文中,我们提出了一个有效且无害的模型所有权验证(移动),以防御不同类型的模型窃取,而无需引入新的安全风险。通常,我们通过验证可疑模型是否包含辩护人指定的外部特征的知识来进行所有权验证。具体而言,我们通过修改一些具有样式转移的训练样本来嵌入外部功能。然后,我们训练一个元分类群,以确定模型是否被受害者偷走了。这种方法的灵感来自于理解,即被盗模型应包含受害者模型学到的特征的知识。特别是\ revision {我们在白色框和黑色框设置下开发了移动方法,并分析其理论基础以提供全面的模型保护。}在基准数据集中进行了广泛的实验,验证了我们方法的有效性及其对潜在适应性攻击的抵抗力。复制我们方法的主要实验的代码可在https://github.com/thuyimingli/move上获得。

Currently, deep neural networks (DNNs) are widely adopted in different applications. Despite its commercial values, training a well-performing DNN is resource-consuming. Accordingly, the well-trained model is valuable intellectual property for its owner. However, recent studies revealed the threats of model stealing, where the adversaries can obtain a function-similar copy of the victim model, even when they can only query the model. In this paper, we propose an effective and harmless model ownership verification (MOVE) to defend against different types of model stealing simultaneously, without introducing new security risks. In general, we conduct the ownership verification by verifying whether a suspicious model contains the knowledge of defender-specified external features. Specifically, we embed the external features by modifying a few training samples with style transfer. We then train a meta-classifier to determine whether a model is stolen from the victim. This approach is inspired by the understanding that the stolen models should contain the knowledge of features learned by the victim model. In particular, \revision{we develop our MOVE method under both white-box and black-box settings and analyze its theoretical foundation to provide comprehensive model protection.} Extensive experiments on benchmark datasets verify the effectiveness of our method and its resistance to potential adaptive attacks. The codes for reproducing the main experiments of our method are available at https://github.com/THUYimingLi/MOVE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源