论文标题
环境对Starforge模拟中星星多样性的影响
Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations
论文作者
论文摘要
大多数观察到的恒星是多星系的一部分,但是这种系统的形成以及环境和各种物理过程的作用仍然很少了解。我们提出了一套来自Starforge项目的星形分子云的辐射磁性水力动力学模拟,其中包括具有不同初始表面密度,磁场,湍流水平,金属性,星际辐射场,模拟几何形状和湍流驱动的恒星反馈。在我们的基准云中,原始仿真数据与以前的工作相似,再现了太阳能和较高质量恒星的观察到的多重分数。但是,在纠正观察性不完整之后,模拟不足以预测这些值。差异可能是由于缺乏磁盘碎片化所致,因为模拟仅解决通过捕获或核心碎片形成的倍数。伴侣的原始质量分布与$> 1 \,\ mathrm {m_ \ odot} $ start的同伴的随机绘制一致,但是,考虑到观察性不完整的情况会产生类似于观察值的平淡分布。我们表明,随着云的演变和抗逆转,恒星多样性随着恒星密度的变化而发生变化。这种关系还解释了运行之间的大多数多样性变化,即在初始条件下增加恒星密度(增加表面密度,湍流降低)的变化会降低多重性。而其他参数(例如金属性,星际辐射和几何形状)显着影响恒星形成历史或IMF,而改变它们并没有产生恒星多重性能的清晰趋势。
Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields, level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud the raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous works. However, after correcting for observational incompleteness the simulation under-predicts these values. The discrepancy is likely due to the lack of disk fragmentation, as the simulation only resolves multiples that form either through capture or core fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function for the companions of $>1\,\mathrm{M_\odot}$ stars, however, accounting for observational incompleteness produces a flatter distribution similar to observations. We show that stellar multiplicity changes as the cloud evolves and anti-correlates with stellar density. This relationship also explains most multiplicity variations between runs, i.e., variations in the initial conditions that increase stellar density (increased surface density, reduced turbulence) decrease multiplicity. While other parameters, such as metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces no clear trend in stellar multiplicity properties.