论文标题

在源空间中存在各向异性的情况下,脑电图向前建模方法的验证

Validation of EEG forward modeling approaches in the presence of anisotropy in the source space

论文作者

Drechsler, Florian, Vorwerk, Johannes, Haueisen, Jens, Grasedyck, Lars, Wolters, Carsten H.

论文摘要

脑电图(EEG)源分析中反向方法的质量取决于向前建模方法的准确性,即对大脑中已知偶极子源的电势的模拟。在这里,我们使用多层球体建模方案来研究基于组织电导率各向异性的三种不同有限元方法(FEM)基于EEG的正向方法的性能 - 减法,venant和部分整合。在我们的研究中,各向异性对电势的影响与忽略各向异性和数值误差,收敛行为和计算速度的模型误差有关。使用三种不同的源空间各向异性模型,最能代表成人,儿童和过早的婴儿体积传导方案。该研究的主要发现包括(1)源空间电导率各向异性对电势计算具有显着影响:随着各向异性比率的增加,效果增加; (2)数值误差远低于各向异性效应,所有三种FEM方法都能够相应地对源空间各向异性进行建模,而Venant方法在准确性和计算速度之间提供了最佳折衷。 (3)Fe网格必须在捕获其主要活性的源和传感器之间的子域中足够细。我们得出的结论是,特别是对于皮质发育的分析,但对于使用脑电图源分析技术的更一般应用,应该对源空间电导率各向异性进行建模,并且fem venant方法是一种适当的方法。

The quality of the inverse approach in electroencephalography (EEG) source analysis is - among other things - depending on the accuracy of the forward modeling approach, i.e., the simulation of the electric potential for a known dipole source in the brain. Here, we use multilayer sphere modeling scenarios to investigate the performance of three different finite element method (FEM) based EEG forward approaches - subtraction, Venant and partial integration - in the presence of tissue conductivity anisotropy in the source space. In our studies, the effect of anisotropy on the potential is related to model errors when ignoring anisotropy and to numerical errors, convergence behavior and computational speed of the different FEM approaches. Three different source space anisotropy models that best represent adult, child and premature baby volume conduction scenarios, are used. Major findings of the study include (1) source space conductivity anisotropy has a significant effect on electric potential computation: The effect increases with increasing anisotropy ratio; (2) with numerical errors far below anisotropy effects, all three FEM approaches are able to model source space anisotropy accordingly, with the Venant approach offering the best compromise between accuracy and computational speed; (3) FE meshes have to be fine enough in the subdomain between the source and the sensors that capture its main activity. We conclude that, especially for the analysis of cortical development, but also for more general applications using EEG source analysis techniques, source space conductivity anisotropy should be modeled and the FEM Venant approach is an appropriate method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源