论文标题

一种以模型为导向的方法,用于在答案集编程中提起对称性

A Model-Oriented Approach for Lifting Symmetries in Answer Set Programming

论文作者

Tarzariol, Alice

论文摘要

在解决组合问题时,必须从搜索空间中修剪对称解决方案候选者。大多数现有方法是特定于实例的,并专注于每个给定的问题实例的对称破坏约束(SBC)的自动计算。但是,由于计算出的SBC是命题,因此将这种方法应用于大规模实例或高级问题编码可能是有问题的,因此既不能被有意义地解释或转移到其他实例中。结果,必须在求解器的每次调用之前进行耗时的SBC重新计算。 为了克服这些局限性,我们引入了一种新的面向模型的方法,用于答案集编程,该方法将小问题实例的SBC提升为一组可解释的一阶约束,使用一种称为归纳逻辑编程的机器学习形式。在针对简单的组合问题之后,我们旨在扩展我们的方法,也可以应用于高级决策和优化问题。

When solving combinatorial problems, pruning symmetric solution candidates from the search space is essential. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs must be done before every invocation of a solver. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using a form of machine learning called Inductive Logic Programming. After targeting simple combinatorial problems, we aim to extend our method to be applied also for advanced decision and optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源