论文标题

扩展的GUP配方和动量截止的作用

Extended GUP formulation and the role of momentum cut-off

论文作者

Segreto, Sebastiano, Montani, Giovanni

论文摘要

我们分析了与琴弦低能极限一致的GUP理论的扩展,该理论是在关联代数的背景下,代表了满足Jacobi身份的最通用的配方之一。在对利用宇宙学领域的考虑方法的性质提供了一些物理见解之后,我们首先,我们表明如何在无限动量空间中自然表述该理论的自然表述不会导致非零的最小不确定性的出现,然后我们在这种情况下构建了一个不可能恢复的特征,因此我们在这种情况下构建了一个截断的位置,因为在这种情况下,我们才能恢复过来的特征 - 恢复了一定的特征 - 恢复了一定的一部分,并且是一定的,而不是一个人,并且是一个不可能的事物,并且是一个不可能的事物。在这些理论中通常 - 可以解释为截止物理效应的现象学表现。两种量化方案都是完全表征的,并最终应用于研究波包的行为及其演变。鉴于存在最小长度的形式,所获得的结果可以阐明GUP理论的概括与琴弦低能极限更加连贯。

We analyze the extension of the GUP theory deriving from the modified uncertainty principle in agreement with the string low energy limit, which represents one of the most general formulations satisfying the Jacobi identity, in the context of the associative algebras. After providing some physical insights on the nature of the considered approaches exploiting the cosmological arena, first, we show how a natural formulation of the theory in an infinite momentum space does not lead to the emergence of a nonzero minimal uncertainty in position, then we construct a truncated formulation of the theory in momentum space, proving that only in this case we can recover the desired feature of the presence of a nonzero minimal uncertainty in position, which - as usual in these theories - can be interpreted as a phenomenological manifestation of cut-off physics effects. Both quantization schemes are completely characterized and finally applied to study wave packets' behavior and their evolution in time. The obtained results can shed light on which generalizations of the GUP theory are more coherent with the string low energy limit, in view of the existence of a minimum length in the form of a minimal uncertainty in position.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源