论文标题

基于高强度区域的自学策略和注意力机制的水下增强

Underwater enhancement based on a self-learning strategy and attention mechanism for high-intensity regions

论文作者

Mello Jr., Claudio D., Moreira, Bryan U., Evald, Paulo J. O., Drews Jr., Paulo L., Botelho, Silvia S.

论文摘要

在水下活动期间获得的图像遭受了水的环境特性,例如浊度和衰减。这些现象会导致颜色失真,模糊和对比度减少。另外,不规则的环境光分布会导致色通道不平衡和具有高强度像素的区域。最近的作品与水下图像增强有关,并基于深度学习方法,解决了缺乏生成合成基地的配对数据集。在本文中,我们提出了一种基于深度学习的水下图像增强的自我监督学习方法,该方法不需要配对的数据集。提出的方法估计了水下图像中存在的降解。此外,自动编码器重建此图像,并使用估计的降解信息降解其输出图像。因此,该策略在训练阶段的损耗函数中用降级版本代替了输出图像。此过程\ textIt {MiseReads}学会补偿其他降级的神经网络。结果,重建的图像是输入图像的增强版本。此外,该算法还提出了一个注意模块,以减少通过颜色通道不平衡和异常区域在增强图像中产生的高强度区域。此外,提出的方法不需要基本真实。此外,仅使用真正的水下图像来训练神经网络,结果表明该方法在颜色保存,颜色降低和对比度改进方面的有效性。

Images acquired during underwater activities suffer from environmental properties of the water, such as turbidity and light attenuation. These phenomena cause color distortion, blurring, and contrast reduction. In addition, irregular ambient light distribution causes color channel unbalance and regions with high-intensity pixels. Recent works related to underwater image enhancement, and based on deep learning approaches, tackle the lack of paired datasets generating synthetic ground-truth. In this paper, we present a self-supervised learning methodology for underwater image enhancement based on deep learning that requires no paired datasets. The proposed method estimates the degradation present in underwater images. Besides, an autoencoder reconstructs this image, and its output image is degraded using the estimated degradation information. Therefore, the strategy replaces the output image with the degraded version in the loss function during the training phase. This procedure \textit{misleads} the neural network that learns to compensate the additional degradation. As a result, the reconstructed image is an enhanced version of the input image. Also, the algorithm presents an attention module to reduce high-intensity areas generated in enhanced images by color channel unbalances and outlier regions. Furthermore, the proposed methodology requires no ground-truth. Besides, only real underwater images were used to train the neural network, and the results indicate the effectiveness of the method in terms of color preservation, color cast reduction, and contrast improvement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源