论文标题
信息分析的价值用于外部验证风险预测模型
Value of Information Analysis for External Validation of Risk Prediction Models
论文作者
论文摘要
背景:在被用于告知患者护理之前,需要在目标人群的代表性样本中验证风险预测模型。验证样本的有限大小需要关于模型性能的估计存在不确定性。我们将信息价值方法作为框架,以量化NB的不确定性的后果。方法:我们将模型验证的完美信息(EVPI)的预期价值定义为NB中的预期损失,因为不自信地知道哪种替代决策在给定的风险阈值下赋予了最高的NB。我们提出了基于NBS的贝叶斯或普通自举的EVPI计算方法,以及中央极限定理支持的渐近方法。我们进行了简短的模拟研究,以比较这些方法的性能,并使用国际临床试验的数据子集预测心肌梗死后的死亡率作为案例研究。结果:三种计算方法在模拟研究中产生了相似的EVPI值。在案例研究中,在预先指定的0.02阈值下,最佳的决定是使用该模型,预期的增量NB为0.0020,而不是处理所有模型。在此阈值下,EVPI为0.0005(相对EVPI为25%)。当缩放到美国的心脏病发作人数时,这对应于每年损失400个真实的阳性或额外的19,600个假阳性(不必要的治疗),表明进一步模型验证的价值。正如预期的那样,验证EVPI通常以较大的样本下降。结论:信息价值方法可以应用于在临床预测模型外部验证期间计算的NB,以提供对不确定性后果的决策理论观点。
Background: Before being used to inform patient care, a risk prediction model needs to be validated in a representative sample from the target population. The finite size of the validation sample entails that there is uncertainty with respect to estimates of model performance. We apply value-of-information methodology as a framework to quantify the consequence of such uncertainty in terms of NB. Methods: We define the Expected Value of Perfect Information (EVPI) for model validation as the expected loss in NB due to not confidently knowing which of the alternative decisions confers the highest NB at a given risk threshold. We propose methods for EVPI calculations based on Bayesian or ordinary bootstrapping of NBs, as well as an asymptotic approach supported by the central limit theorem. We conducted brief simulation studies to compare the performance of these methods, and used subsets of data from an international clinical trial for predicting mortality after myocardial infarction as a case study. Results: The three computation methods generated similar EVPI values in simulation studies. In the case study, at the pre-specified threshold of 0.02, the best decision with current information would be to use the model, with an expected incremental NB of 0.0020 over treating all. At this threshold, EVPI was 0.0005 (a relative EVPI of 25%). When scaled to the annual number of heart attacks in the US, this corresponds to a loss of 400 true positives, or extra 19,600 false positives (unnecessary treatments) per year, indicating the value of further model validation. As expected, the validation EVPI generally declined with larger samples. Conclusion: Value-of-information methods can be applied to the NB calculated during external validation of clinical prediction models to provide a decision-theoretic perspective to the consequences of uncertainty.