论文标题

使用深度学习近似和灵活的空间过程对极端流量进行建模

Modeling Extremal Streamflow using Deep Learning Approximations and a Flexible Spatial Process

论文作者

Majumder, Reetam, Reich, Brian J., Shaby, Benjamin A.

论文摘要

量化极端洪水事件的概率和幅度的变化是减轻其影响的关键。尽管流体动力学数据本质上是空间依赖的,但传统的空间模型(例如高斯过程)不适合对极端事件进行建模。具有更现实的尾巴依赖特征的空间极值模型正在积极发展。从理论上讲,它们是合理的,但具有棘手的可能性,使计算对小数据集具有挑战性,对大陆规模研究的挑战。我们提出了一个工艺混合模型(PMM),该模型将极端值的空间依赖性指定为高斯过程和最大稳定过程的凸组合,从而产生了理想的尾巴依赖性,但可能性很大。为了解决这个问题,我们采用了一种独特的计算策略,其中馈送前向神经网络嵌入密度回归模型中,以近似一个空间位置的条件分布,给定一组邻居。然后,我们使用此单变量密度函数来通过vecchia近似方式近似所有位置的关节可能性。 PMM用于分析过去50年中美国年度最大流量的变化,并能够检测出显示随着时间的流动流的增加的区域。

Quantifying changes in the probability and magnitude of extreme flooding events is key to mitigating their impacts. While hydrodynamic data are inherently spatially dependent, traditional spatial models such as Gaussian processes are poorly suited for modeling extreme events. Spatial extreme value models with more realistic tail dependence characteristics are under active development. They are theoretically justified, but give intractable likelihoods, making computation challenging for small datasets and prohibitive for continental-scale studies. We propose a process mixture model (PMM) which specifies spatial dependence in extreme values as a convex combination of a Gaussian process and a max-stable process, yielding desirable tail dependence properties but intractable likelihoods. To address this, we employ a unique computational strategy where a feed-forward neural network is embedded in a density regression model to approximate the conditional distribution at one spatial location given a set of neighbors. We then use this univariate density function to approximate the joint likelihood for all locations by way of a Vecchia approximation. The PMM is used to analyze changes in annual maximum streamflow within the US over the last 50 years, and is able to detect areas which show increases in extreme streamflow over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源