论文标题

LFGCF:轻型人物图图协作过滤,用于标记的建议

LFGCF: Light Folksonomy Graph Collaborative Filtering for Tag-Aware Recommendation

论文作者

Zhang, Yin, Xu, Can, Wu, XianJun, Zhang, Yan, Dong, LiGang, Wang, Weigang

论文摘要

标记的建议是通过标记行为预测用户的个性化项目列表的任务。对于具有Last.FM或Movielens等标记功能的许多应用程序至关重要。最近,许多努力致力于通过图形卷积网络(GCN)改进标签的推荐系统(TRS),这已成为一般建议的新最新技术。但是,某些解决方案直接从GCN继承而没有理由,这很难减轻标签引入的稀疏性,模棱两可和冗余问题,从而增加了培训和退化建议性能的困难。 在这项工作中,我们旨在简化GCN的设计,以使其更简洁。我们提出了一种名为Light FolkSonomy图协作滤波(LFGCF)的新型标记感知推荐模型,该模型仅包括必需的GCN组件。具体来说,LFGCF首先从用户分配标签和被标记的项目记录的记录中构造了人们图。然后,我们利用汇总的简单设计来了解人们对人物图表的高阶表示,并使用在多个层中学习的嵌入的加权总和进行信息更新。我们共享标签嵌入,以弥合用户和项目之间的信息差距。此外,提出了一个名为Transrt的正规化功能,以更好地描述用户的偏好和项目功能。对三个现实世界数据集的广泛超参数实验和消融研究表明,LFGCF使用的参数较少,并且明显优于大多数基线的Tag-Aware Top-N建议。

Tag-aware recommendation is a task of predicting a personalized list of items for a user by their tagging behaviors. It is crucial for many applications with tagging capabilities like last.fm or movielens. Recently, many efforts have been devoted to improving Tag-aware recommendation systems (TRS) with Graph Convolutional Networks (GCN), which has become new state-of-the-art for the general recommendation. However, some solutions are directly inherited from GCN without justifications, which is difficult to alleviate the sparsity, ambiguity, and redundancy issues introduced by tags, thus adding to difficulties of training and degrading recommendation performance. In this work, we aim to simplify the design of GCN to make it more concise for TRS. We propose a novel tag-aware recommendation model named Light Folksonomy Graph Collaborative Filtering (LFGCF), which only includes the essential GCN components. Specifically, LFGCF first constructs Folksonomy Graphs from the records of user assigning tags and item getting tagged. Then we leverage the simple design of aggregation to learn the high-order representations on Folksonomy Graphs and use the weighted sum of the embeddings learned at several layers for information updating. We share tags embeddings to bridge the information gap between users and items. Besides, a regularization function named TransRT is proposed to better depict user preferences and item features. Extensive hyperparameters experiments and ablation studies on three real-world datasets show that LFGCF uses fewer parameters and significantly outperforms most baselines for the tag-aware top-N recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源