论文标题

超对称分区功能层次结构和字符扩展

Supersymmetric partition function hierarchies and character expansions

论文作者

Wang, Rui, Liu, Fan, Li, Min-Li, Zhao, Wei-Zhong

论文摘要

我们通过$ w $ - 代表构建了超对称$β$和$(Q,t)$ - 变形的Hurwitz-Kontsevich分区功能,并分别呈现相应的角色扩展,分别相对于Jack和MacDonald Superpolynomials。基于构建的$β$和$(q,t)$ - 变形的超级操作员,我们进一步通过$ w $ presentations提供了超对称$β$和$(q,t)$ - 变形的分区功能层次结构。我们还介绍了广义的超级Virasoro约束,其中约束操作员遵守广义的超级Virasoro代数和Null Super 3-Elgebra。此外,这些(未构造的)超对称层次结构的可整合性由其字符扩展(即$ <trace> \ sim targe $ $)显示。

We construct the supersymmetric $β$ and $(q,t)$-deformed Hurwitz-Kontsevich partition functions through $W$-representations and present the corresponding character expansions with respect to the Jack and Macdonald superpolynomials, respectively. Based on the constructed $β$ and $(q,t)$-deformed superoperators, we further give the supersymmetric $β$ and $(q,t)$-deformed partition function hierarchies through $W$-representations. We also present the generalized super Virasoro constraints, where the constraint operators obey the generalized super Virasoro algebra and null super 3-algebra. Moreover, the superintegrability for these (non-deformed) supersymmetric hierarchies is shown by their character expansions, i.e., $<character>\sim character$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源