论文标题
在不同的通信延迟下,用于基于MAV的无碰撞导航的多阶段NMPC
Multi-Stage NMPC for a MAV based Collision Free Navigation under Varying Communication Delays
论文作者
论文摘要
通信网络中的时间延迟是通过边缘部署机器人的主要关注点之一。本文提出了一个多阶段的非线性模型预测控制(NMPC),该控制能够处理不同的网络引起的时间延迟,以建立控制框架,以确保无碰撞的微型微型航空车(MAVS)导航。这项研究介绍了一种新颖的方法,该方法通过与现有的典型多阶段NMPC相反的离散化场景树来考虑不同的采样时间,在这种情况下,系统不确定性是由情景树建模的。此外,该提出的方法根据通信链接中时间延迟的概率考虑了多阶段NMPC方案的自适应权重。由于多阶段NMPC,获得的最佳控制动作对于多个采样时间有效。最后,在各种测试和不同的仿真环境中证明了所提出的新型控制框架的总体有效性。
Time delays in communication networks are one of the main concerns in deploying robots with computation boards on the edge. This article proposes a multi-stage Nonlinear Model Predictive Control (NMPC) that is capable of handling varying network-induced time delays for establishing a control framework being able to guarantee collision-free Micro Aerial Vehicles (MAVs) navigation. This study introduces a novel approach that considers different sampling times by a tree of discretization scenarios contrary to the existing typical multi-stage NMPC where system uncertainties are modeled by a tree of scenarios. Additionally, the proposed method considers adaptive weights for the multi-stage NMPC scenarios based on the probability of time delays in the communication link. As a result of the multi-stage NMPC, the obtained optimal control action is valid for multiple sampling times. Finally, the overall effectiveness of the proposed novel control framework is demonstrated in various tests and different simulation environments.