论文标题
星形星系中的星形形成效率低下和kennicutt-schmidt法律
Star formation inefficiency and Kennicutt-Schmidt laws in early-type galaxies
论文作者
论文摘要
观察到磁盘星系中的恒星形成遵循经验的kennicutt-schmidt法律,这是气体表面密度($σ_{gas} $)[$ \ textrm {m} _ {\ odot} \; \ textrm {kpc}^{ - 2} $]和恒星形成率($σ_{sfr} $)[$ \ textrm {m} _ {\ odot} \; \ textrm {kpc}^{ - 2} \; \ textrm {gyr}^{ - 1} $]。与磁盘星系相比,早期型星系(ETG)通常与几乎没有恒星形成相关,因此没有Kennicutt-Schmidt定律;然而,最近的观察结果指出,ETG中存在大量气态冷盘,这提出了一个问题,即为什么气体转化为恒星如此效率如此低。借助我们的最新模拟,通过高分辨率的流体动力数值MACER进行,我们将ETG的传统分类重新评估为静止的,死星系。我们通过简单但健壮的星形形成模型结合了局部吸血鬼不稳定性和局部气体冷却时间表,在存在银河系旋转的情况下,在存在银河系旋转的情况下,在宿主星系的冷却发作后,恒星磁盘的不可避免的形成。我们发现,在磁盘星系中观察到的观察到的阈值,斜率和归一化,可以在表面密度和体积形式下为我们的模拟ETG进行分辨的Kennicutt-Schmidt星形形成定律。同时,通过分析全球肯尼法特 - 施密特法律,我们建议增加恒星形成和高气气流流出为观察到的恒星形成效率低下的问题提供了部分补救措施。因此,我们的星形形成预测的观察性检查对于确认局部恒星形成定律的形式和ETG中的星星形成效率低下至关重要。
Star formation in disk galaxies is observed to follow the empirical Kennicutt-Schmidt law, a power-law relationship between the surface density of gas ($Σ_{gas}$) [$\textrm{M}_{\odot}\; \textrm{kpc}^{-2}$] and the star formation rate ($Σ_{SFR}$) [$\textrm{M}_{\odot}\; \textrm{kpc}^{-2} \; \textrm{Gyr}^{-1}$]. In contrast to disk galaxies, early-type galaxies (ETGs) are typically associated with little to no star formation and therefore no Kennicutt-Schmidt law; recent observations, however, have noted the presence of massive gaseous cold disks in ETGs, raising the question as to why the conversion of gas into stars is so inefficient. With our latest simulations, performed with our high-resolution hydrodynamic numerical code MACER, we reevaluate the traditional classification of ETGs as quiescent, dead galaxies. We predict the inevitable formation of stellar disks following cooling episodes of the ISM of the host galaxy in the presence of galactic rotation via a simple but robust star formation model combining local Toomre instabilities and local gas cooling timescales. We find that resolved Kennicutt-Schmidt star formation laws for our simulated ETGs, in both surface density and volumetric forms, reproduce the observed threshold, slope, and normalization observed in disk galaxies. At the same time, through analysis of global Kennicutt-Schmidt laws, we suggest that increased star formation and high gaseous outflows offers a partial remedy to the observed star formation inefficiency problem. Observational checks of our star formation predictions are thus essential for confirming the form of local star formation laws and reassessing star formation inefficiency in ETGs.