论文标题
轮班空间中的傅立叶分析
Fourier analysis in spaces of shifts
论文作者
论文摘要
在本文中,我们在单个函数的等距变化产生的空间中,在正交碱基上开发了分解的持续类似物。通过这样做,我们通过$ L_2(\ Mathbb {r})$中的偏移空间获得了明确的表达式。结果是根据经典的傅立叶变换来制定的,并且倾向于通过移动空间,尤其是在样条近似中具有各种应用。
In this paper, we develop a continual analog of decomposition over orthogonal bases in spaces generated by equidistant shifts of a single function. By doing so, we obtain an explicit expression for best approximation by spaces of shifts in $L_2(\mathbb{R})$. The result is formulated in terms of classical Fourier transform and tends to have various applications in approximation by spaces of shifts and, in particular, in spline approximation.