论文标题

域随机化增强深度模拟和恢复,以感知和抓住镜子和透明对象

Domain Randomization-Enhanced Depth Simulation and Restoration for Perceiving and Grasping Specular and Transparent Objects

论文作者

Dai, Qiyu, Zhang, Jiyao, Li, Qiwei, Wu, Tianhao, Dong, Hao, Liu, Ziyuan, Tan, Ping, Wang, He

论文摘要

商业深度传感器通常会产生嘈杂和缺失的深度,尤其是在镜面和透明的对象上,这对下游深度或基于点云的任务构成了关键问题。为了减轻此问题,我们提出了一个强大的RGBD融合网络Swindrnet,以进行深度修复。我们进一步提出了域随机增强深度模拟(DREDS)方法,以使用基于物理的渲染模拟主动的立体声深度系统,并生成一个大规模合成数据集,该数据集包含130k Photorealistic RGB图像以及其模拟深度带有现实主义的传感器噪声。为了评估深度恢复方法,我们还策划了一个现实世界中的数据集,即STD,该数据集捕获了30个混乱的场景,该场景由50个对象组成,具有不同的材料,从透明,透明,弥漫到弥漫。实验表明,拟议的DREDS数据集桥接了SIM到实地域间隙,因此,在Dreds进行了训练,我们的Swindrnet可以无缝地概括到其他真实的深度数据集,例如ClearGrasp,并以实时速度胜过深度恢复的竞争方法。我们进一步表明,我们的深度恢复有效地提高了下游任务的性能,包括类别级别的姿势估计和握把任务。我们的数据和代码可从https://github.com/pku-epic/dreds获得

Commercial depth sensors usually generate noisy and missing depths, especially on specular and transparent objects, which poses critical issues to downstream depth or point cloud-based tasks. To mitigate this problem, we propose a powerful RGBD fusion network, SwinDRNet, for depth restoration. We further propose Domain Randomization-Enhanced Depth Simulation (DREDS) approach to simulate an active stereo depth system using physically based rendering and generate a large-scale synthetic dataset that contains 130K photorealistic RGB images along with their simulated depths carrying realistic sensor noises. To evaluate depth restoration methods, we also curate a real-world dataset, namely STD, that captures 30 cluttered scenes composed of 50 objects with different materials from specular, transparent, to diffuse. Experiments demonstrate that the proposed DREDS dataset bridges the sim-to-real domain gap such that, trained on DREDS, our SwinDRNet can seamlessly generalize to other real depth datasets, e.g. ClearGrasp, and outperform the competing methods on depth restoration with a real-time speed. We further show that our depth restoration effectively boosts the performance of downstream tasks, including category-level pose estimation and grasping tasks. Our data and code are available at https://github.com/PKU-EPIC/DREDS

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源