论文标题

在长期渐近渐近的Camassa-Holm方程中,在时空孤子区域中具有非零边界条件

On the long-time asymptotic of the modified Camassa-Holm equation with nonzero boundary conditions in space-time solitonic regions

论文作者

Yang, Jin-Jie, Tian, Shou-Fu, Li, Zhi-Qiang

论文摘要

我们研究了在不同区域中具有非零边界条件的修改后的Camassa-Holm(MCH)方程的Cauchy问题的长期渐近行为\ begin {align*}&m_ {t}+\ left(((u^2-u__x^2)m (x,t)\ in \ Mathbb {r} \ times \ times \ Mathbb {r}^{+},\\&u(x,0)= u_ {0}(x),~~ \ lim_ {x \ to \ to \ to \ to \ pm \ pm \ pm \ pm \ infty} u_ {0} u_ {0}(x) h^{4,1}(\ Mathbb {r}),\ end {align*}其中$ m(x,t = 0):= m_ {0}(x)$和$ m_ {0}(x)(x)-1 \ in H^{2,1}(2,1}(\ MathBb {r Mathbb {r})$。通过频谱分析,MCH方程的初始值问题被转换为新平面$(y,t)$上的矩阵RH问题,然后使用$ \ + + + +叠加{\ partial} $ - 非线性最陡峭的下降方法,我们分析了四个区域的不同渐近性行为,以$/t $之一的间隔= y/t $ ON ON ON $ ON ON PRAMER SINGIAT = y/T $ ON ON PLARES。 $ \ {(y,t)| y \ in( - \ infty,+\ infty),t> 0 \} $。没有稳态相位点对应于区域$ξ\ in( - \ infty,-1/4)\ cup(2,\ infty)$。我们证明,MCH方程的解决方案的特征在于这两个区域上的$ n $ -soliton解决方案和错误。在(-1/4,0)$和(0,2)$中的$ξ\ in(-1/4,0)$中,相位函数$θ(z)$分别具有八个和四个稳态相点。我们证明,孤子分辨率的猜想成立,即MCH方程的解可以表示为离散频谱上的孤子解,连续频谱上的主要项和残差误差。我们的结果还表明,具有非零条件边界的MCH方程的孤子溶液在渐近稳定。

We investigate the long-time asymptotic behavior for the Cauchy problem of the modified Camassa-Holm (mCH) equation with nonzero boundary conditions in different regions \begin{align*} &m_{t}+\left((u^2-u_x^2)m\right)_{x}=0,~~ m=u-u_{xx}, ~~ (x,t)\in\mathbb{R}\times\mathbb{R}^{+},\\ &u(x,0)=u_{0}(x),~~\lim_{x\to\pm\infty} u_{0}(x)=1,~~u_{0}(x)-1\in H^{4,1}(\mathbb{R}), \end{align*} where $m(x,t=0):=m_{0}(x)$ and $m_{0}(x)-1\in H^{2,1}(\mathbb{R})$. Through spectral analysis, the initial value problem of the mCH equation is transformed into a matrix RH problem on a new plane $(y,t)$, and then using the $\overline{\partial}$-nonlinear steepest descent method, we analyze the different asymptotic behaviors of the four regions divided by the interval of $ξ=y/t$ on plane $\{(y,t)|y\in(-\infty,+\infty), t>0\}$. There is no steady-state phase point corresponding to the regions $ξ\in(-\infty,-1/4)\cup(2,\infty)$. We prove that the solution of mCH equation is characterized by $N$-soliton solution and error on these two regions. In $ξ\in(-1/4,0)$ and $ξ\in(0,2)$, the phase function $θ(z)$ has eight and four steady-state phase points, respectively. We prove that the soliton resolution conjecture holds, that is, the solution of the mCH equation can be expressed as the soliton solution on the discrete spectrum, the leading term on the continuous spectrum, and the residual error. Our results also show that soliton solutions of the mCH equation with nonzero condition boundary are asymptotically stable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源