论文标题

弥合差距:在线和离线COVID-19数据之间的共同性和差异

Bridging the Gap: Commonality and Differences between Online and Offline COVID-19 Data

论文作者

Kim, Nayoung, Mosallanezhad, Ahmadreza, Cheng, Lu, Li, Baoxin, Li, Huan

论文摘要

随着COVID-19的大流行的开始,新闻媒体和社交媒体已成为传播和消费信息的中心工具。由于易于访问,用户从在线社交媒体(即在线新闻)和新闻媒体(即离线新闻)中寻求与Covid-19相关的信息。在线和离线新闻经常连接,共享共同的主题,而每个主题都有独特的不同主题。这两个新闻来源之间的差距可能导致错误信息传播。例如,根据《卫报》(Guardian)的说法,大多数Covid-19的错误信息来自社交媒体上的用户。不用事实检查社交媒体新闻,错误信息可能会导致健康威胁。在本文中,我们关注的是通过监视随着时间的流逝产生的常见和独特的主题来弥合在线数据和离线数据之间差距的新问题。我们在两年的时间段内使用Twitter(在线)和本地新闻(离线)数据。使用在线矩阵分解,我们在线和离线COVID-19与-19相关的数据差异和共同点分析和研究。我们设计实验,以显示如何将在线数据和离线数据链接在一起以及它们遵循的趋势。

With the onset of the COVID-19 pandemic, news outlets and social media have become central tools for disseminating and consuming information. Because of their ease of access, users seek COVID-19-related information from online social media (i.e., online news) and news outlets (i.e., offline news). Online and offline news are often connected, sharing common topics while each has unique, different topics. A gap between these two news sources can lead to misinformation propagation. For instance, according to the Guardian, most COVID-19 misinformation comes from users on social media. Without fact-checking social media news, misinformation can lead to health threats. In this paper, we focus on the novel problem of bridging the gap between online and offline data by monitoring their common and distinct topics generated over time. We employ Twitter (online) and local news (offline) data for a time span of two years. Using online matrix factorization, we analyze and study online and offline COVID-19-related data differences and commonalities. We design experiments to show how online and offline data are linked together and what trends they follow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源