论文标题

自适应局部隐式图像函数,用于任意规模的超分辨率

Adaptive Local Implicit Image Function for Arbitrary-scale Super-resolution

论文作者

Li, Hongwei, Dai, Tao, Li, Yiming, Zou, Xueyi, Xia, Shu-Tao

论文摘要

图像表示对于许多视觉任务至关重要。最近的一项研究,即局部隐式图像函数(LIIF),而不是用2D阵列代替图像,而是将图像表示为连续函数,其中像素值是通过使用相应的坐标作为输入来扩展的。由于其连续的性质,可以用于任意规模的图像超分辨率任务,从而为各种提高因素提供了一个有效而有效的模型。但是,Liif通常遭受边缘周围的结构扭曲和响起的伪影,主要是因为所有像素共享相同的模型,因此忽略了图像的局部特性。在本文中,我们提出了一种新颖的自适应局部图像功能(A-LIIF)来减轻此问题。具体而言,我们的A-LIIF由两个主要组成部分组成:编码器和扩展网络。前者捕获了跨尺度的图像特征,而后者通过多个局部隐式图像函数的加权组合对连续升级函数进行建模。因此,我们的A-LIIF可以更准确地重建高频纹理和结构。多个基准数据集的实验验证了我们方法的有效性。我们的代码可在\ url {https://github.com/leehw-thu/a-liif}上找到。

Image representation is critical for many visual tasks. Instead of representing images discretely with 2D arrays of pixels, a recent study, namely local implicit image function (LIIF), denotes images as a continuous function where pixel values are expansion by using the corresponding coordinates as inputs. Due to its continuous nature, LIIF can be adopted for arbitrary-scale image super-resolution tasks, resulting in a single effective and efficient model for various up-scaling factors. However, LIIF often suffers from structural distortions and ringing artifacts around edges, mostly because all pixels share the same model, thus ignoring the local properties of the image. In this paper, we propose a novel adaptive local image function (A-LIIF) to alleviate this problem. Specifically, our A-LIIF consists of two main components: an encoder and a expansion network. The former captures cross-scale image features, while the latter models the continuous up-scaling function by a weighted combination of multiple local implicit image functions. Accordingly, our A-LIIF can reconstruct the high-frequency textures and structures more accurately. Experiments on multiple benchmark datasets verify the effectiveness of our method. Our codes are available at \url{https://github.com/LeeHW-THU/A-LIIF}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源